'Agrogeophysics' as tool to map rocks and soil fertility

Peter van Straaten
School of Environmental Sciences
University of Guelph
Canada

Agrogeology

There are two aspects of agrogeology:

1. Influence of parent material on soil development and soil fertility

2. Beneficial application of rocks and minerals to enhance productivity of soils: ROCKS FOR CROPS

The first aspect of agrogeology: influence of parent material on soil fertilities

Poor soils on weathered granitic rocks: low nutrient status, low H₂O holding capacity, sandy soils.

Fertile soils on weathered basaltic rocks and carbonatites: high Ca, Mg, P and trace element concentrations, high water holding capacity, loam.

Effects of parent material on soil fertility: Bukusu complex, Uganda

Uganda: Identification of lithologies and structures using airborne geophysics

Geology and K (%)

Uganda: Identification of lithologies and structures using airborne geophysics

M= Mubende granite

S = Singo granite

U/K ratio

U/Th ratio

Dolerite dyke swarm

Source: Ruotoistenmäki et al. 2011

Delineation of structures and lithologies

Soil fertility on different parent materials in tropical countries

- **High** over mafic rocks, volcanics, metamorphic (amphibolites), dolerites (generally low K)
- **High** over carbonates, anorthosites, glauconite bearing sediments

■ Variable over gneisses

- Low over quartzites, sandstones, granites (with exceptions)
- Frequently **low** over ultra-mafics (Ni and Cr toxicities)

Joint geological-geophysical surveys: Use of portable geophysical and analytical tools

- Geological studies
- Magnetic susceptibility meter
- Gamma ray spectrometer
- Portable XRF

Airborne radiometric surveys outlining areas with different K concentrations (in %K) in soils and regoliths

Source: Roberto Gusmão et al, in prep.

Low total K, sandy soils
Jatoba Basin

High total K I-type granites

NE Brazil: Differing soil fertilities over different granites

■ I-type granites vs s-type granites

I- and S-type granites produce different soil fertilities in NE Brazil

■ I-type granite: Quartz (30%), plagioclase, biotite, hornblende, augite, magnetite

S-type granite: Quartz (46%), K feldspar, Plagioclase, muscovite

- Soil fertility: medium,elevated Ca, Mg, P and K+ Zn
- Soil fertility: very low, low P, medium K, Altoxicity

Geophysical signals of I type granite: high magnetic susceptibility, high K, low Th

K (%)

Magnetic signal

eTh/K

High magnetic susceptibility

Medium Total count

Geophysical mapping of s and i-type granites outlining different soil fertilities

Passira Anorthosite

■ **High soil fertility** over anorthosite body in NE Brazil – **except for K**

Low total count

Source: Accioly 2000

Passira anorthosite

Studying shoshonites in Pernambuco State

'Rocks for crops' to alleviate soil infertility over anorthosites?

Rock types: syenite and shoshonite

Outlook

Airborne and ground geophysical surveys are novel additional tools for rapid soil mapping and powerful tool in identifying certain exploration targets for agrogeological resource discoveries

Ground geophysical surveys - in combination with geological and geochemical exploration methods - are powerful tools in delineating agrogeological resources for 'rocks for crops' applications (example shoshonite application for K-deficient Passira anorthosite)