

Microbial interactions with feldspars – a catalyst for nutrient release

David Manning & Joana Baptista

School of Civil Engineering & Geosciences,
Newcastle University

Rochagem Pelotas November 2016

Thanks to:

Rochagem III for enabling me to attend Project partners:

Terrativa SA

Massachussetts Institute of Technology **EMBRAPA**

Inspiration and history

The family organic farm: 'you're a geologist, find me some potash': 1996

Mineral Solutions Ltd

Developed and sold 'MSL-K'

- a zeolitised tuff from the Eifel, Germany
- then a phonolite from Scotland
- 1996-2006

http://www.mineralsolutions.co.uk - legacy website

Rochagem I, Brasilia

An introduction to the wonderful world of Rochagem

Leading to partnerships and friendships which continue today

Mineral Solutions to Global Problems

David Manning FGS CSci CGeol EurGeol
Professor of Soil Science
Newcastle University

Mineral Solutions to Global Problems How minerals can save the world!

David Manning FGS CSci CGeol EurGeol
Professor of Soil Science
Newcastle University

Mineral carbonation

Plants are a CO₂ pump

Mineral carbonation

Plants are a CO₂ pump

This is a one-way street for organic carbon

We have measured CaCO₃ 'growth' equivalent to removing 85T CO₂/ha annually Carbon isotopes and ¹⁴C prove the process

How will minerals feed the world in 2050?

David Manning FGS CSci CGeol EurGeol
Professor of Soil Science
Newcastle University

Crops need K (and Si)

- Why consider these two together?
- Both are significant parts of the dry mass of a plant
- Both occur in the same silicate minerals
- Their behaviour contrasts, geochemically

Mineral sources of K

Mineral	Formula	% K ₂ O
K salts		
Sylvite	KCI	63
Carnallite	MgCl ₂ .KCl.6H ₂ O	17
Polyhalite	K ₂ SO ₄ 2CaSO ₄ MgSO ₄ 2H ₂ O	16
K silicates		
K-feldspar	KAISi ₃ O ₈	17
Leucite	KAISi ₂ O ₆	21
Nepheline	(Na,K)AlSiO ₄	15
Micas (eg muscovite)	KAI ₃ Si ₃ O ₁₀ (OH) ₂	11

Feldspars

- One of the most common minerals in the Earth's crust
- 3 major end-members:
 - Orthoclase/microcline (K-feldspar) KAISi₃O₈
 - Albite (Na-plagioclase) NaAlSi₃O₈
 - Anorthite (Ca-plagioclase) CaAl₂Si₂O₈

Feldspars

- K-feldspar is a source of K (and Si) for plant nutrition
- Ca-plagioclase is a source of Ca for carbon capture

The problem with feldspars

Is that they dissolve very slowly

Feldspar dissolution

- Weathering reactions involve dissolution that liberates K and Si
- But what about AI?

Al and Si solubility contrast

Al and Si solubility contrast

Feldspar dissolution

Rates measured in the lab are very slow

How effective are rocks as sources of K?

It is the dissolution rate of silicate minerals, not the K content, that has greatest effect on K availability:

Dissolution rate matters

Mineral	Formula	Weight % K	Dissolution rate, log mol m ⁻² s ⁻¹	Relative dissolution rate
Potassium feldspar	KAISi ₃ O ₈	14.0	-10.06	1
Leucite	KAISi ₂ O ₆	17.9	-6.00	10,000
Nepheline	(Na,K)AlSiO ₄	8.3	-2.73	20,000,000
Muscovite	$KAI_3Si_3O_{10}(OH)_2$	9.0	-11.85	0.01
Biotite	$K_2Fe_6Si_6Al_2O_{20}(OH)_4$	7.6	-9.84	1

Feldspar family Feldspathoid family Mica family: cation exchange

Feldspar corrosion

 A 1 mm diameter grain will last 1,000,000 years, according to lab-derived dissolution rates (which are faster than field).

Trials with leeks in artificial soil

- Great care taken to make sure no K-bearing minerals in the soil
- Used a very pure silica sand, with trace of peat compost

Science of the Total Environment 574 (2017) 476–481

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Testing the ability of plants to access potassium from framework silicate minerals

David A.C. Manning ^{a,*}, Joana Baptista ^a, Mallely Sanchez Limon ^b, Kirsten Brandt ^c

Response to treatment

Mica is as good as KCI

K is available from syenite (feldspar)

K is available from syenite (feldspar)

The problem with feldspars

 So, why do feldspars decompose in a soil, but not in the laboratory?

Investigation of soil feldspars

- Feldspar grains taken from soil:
 - UK, Aberdeen (<150 years in soil)
 - UK, Northern England (10 years in soil)
 - Brazil, Triunfo, Pernambuco (X? years)
- Examined using scanning electron microscopy
- Compared with feldspar from experiment (10 weeks)

Feldspar from experiment

Before After 10 weeks

The surface coating of fine particles has been removed

Feldspar from soil: 10 years exposure

Poorly corroded grains

Heavily corroded grains

Irregular corroded surface, with fungal filaments

Feldspar from soil: 10 years exposure

Heavily corroded grains with testate amoeba

The shells of testate amoeba (a type of protozoa) are made of silica

Feldspar from soil: <150 years exposure

Heavily corroded grains with testate amoeba

Feldspar from Triunfo soil: unknown exposure

Heavily corroded grains with dividing bacteria

How do soil feldspars differ?

- Surfaces are colonised by a community
 - Bacteria
 - Fungi
 - Protozoa
- Is this community as a whole more important than its individual parts?

Bacterial community analysis: joints in weathered rock

- k__Bacteria;p__Actinobacteria;c__Actinobacteri a;o_Actinomycetales
- k__Bacteria;p__Proteobacteria;c__Alphaproteo bacteria;o Rhizobiales
- k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillal es
- k__Bacteria;p__Actinobacteria;c__Thermoleoph ilia;o Solirubrobacterales
- k__Archaea;p__Crenarchaeota;c__Thaumarcha eota;o Nitrososphaerales
- k__Bacteria;p__Actinobacteria;c__Rubrobacteri a;o Rubrobacterales
- k_Bacteria;p_Bacteroidetes;c_Sphingobacter iia;o_Sphingobacteriales
- k__Bacteria;p__Proteobacteria;c__Alphaproteo bacteria;o Rhodobacterales
- k__Bacteria;p__Chloroflexi;c__Thermomicrobia; o JG30-KF-CM45
- k_Bacteria;p_Chloroflexi;c_Chloroflexi;o_
- k__Bacteria;p__Proteobacteria;c__Alphaproteo bacteria;o Sphingomonadales
- k__Bacteria;p__Proteobacteria;c__Betaproteob acteria;o Burkholderiales
- k__Bacteria;p__Actinobacteria;c__Thermoleoph ilia;o Gaiellales

Bacterial community analysis: soil

- k__Bacteria;p__Chloroflexi;c__Ktedonobacteria;o __Thermogemmatisporales
- k__Bacteria;p__Planctomycetes;c__Planctomycet ia;o Gemmatales
- k__Bacteria;p__Proteobacteria;c__Alphaproteob acteria;o Rhizobiales
- k_Bacteria;p_Verrucomicrobia;c_[Spartobacte ria];o_[Chthoniobacterales]
- k_Bacteria;p_Acidobacteria;c_Acidobacteria;o_ Acidobacteriales
- k__Bacteria;p__Firmicutes;c__Clostridia;o__Clost ridiales
- k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales
- k__Bacteria;p__Actinobacteria;c__Actinobacteria; o__Actinomycetales
- k__Bacteria;p__Nitrospirae;c__Nitrospira;o__Nitrospirales
- k__Bacteria;p__Acidobacteria;c__Acidobacteria-6;o__iii1-15
- k__Bacteria;p__Armatimonadetes;c__S1a-1H;o__
- k__Bacteria;p__AD3;c__ABS-6;o__
- k_Bacteria;p_Actinobacteria;c_Thermoleophili a;o Gaiellales

Importance of protozoa

- Protozoa are predators
- They eat bacteria, fungi, anything smaller than them
- Testate protozoa have silica tests (shells)
- They represent a sink for silica
- Their presence demonstrates that silica is mobile

Feldspar corrosion

- A 1 mm diameter grain will last 1,000,000 years, according to lab-derived dissolution rates (which are faster than field).
- We observe that corrosion after 10 years gives cavities of the order of 0.1 mm – so a 1 mm grain would last of the order of 100 years.

Feldspar corrosion

- A 1 mm diameter grain will last 1,000,000 years, according to lab-derived dissolution rates (which are faster than field).
- We observe that corrosion after 10 years gives cavities of the order of 0.1 mm – so a 1 mm grain would last of the order of 100 years.
- Or if lab-based rates are correct, a 1mm grain would lose only 0.01 µm from its surface in 10 years – invisible using SEM

Feldspar from soil: 10 years exposure

Typical of lab rates

Exceeds lab rates

Deeper corrosion than predicted links with biology

Feldspar corrosion

- A 1 mm diameter grain will last 1,000,000 years, according to lab-derived dissolution rates (which are faster than field).
- We observe that corrosion after 10 years gives cavities of the order of 0.1 mm – so a 1 mm grain would last of the order of 100 years.
- Such corrosion is normally associated with the development of a complex biological community
- Is the key to this corrosion the community that we observe on a feldspar surface?

Conclusions

- K-feldspars evidently release K for plant growth
- The surfaces of K-feldspars from soils are inhabited by a diverse community of microbes and the protozoa that feed upon them
- The presence of testate amoeba demonstrates that silica is mobile in this environment
- To understand how feldspar performs as a fertilizer, we need to consider the microecology of the soil
- We need to develop the concept of microecosystem services

It's a zoo out there

When we talk about 'ecosystem services', we think about the things we can see

It's a zoo down there

In soils, we can't see the community, but it is vital to recognise that it is complex, with predators and prey

a *microecosystem* providing services that are just as important to mankind

There's a whole world

Waiting in feldspars, and no doubt other silicate mineral surfaces

Exploration is just beginning

